Lesson on another variable quantity x. Example 1:

Lesson 1: Functions as ModelsA function can be a simple mathemical model or a piece of larger model. Recallthat a functon is just a rule or law f, that expresses the dependency of a variablequantity, y, on another variable quantity x.Example 1: The cost of a pound of orange juice for three consecutuve weekis given by the table below:The Price of Orange Juice Week Week 1 Week 2 Week 3Cost 200 215 230What will be the cost of a pound of orange juice be in Week 4?Solution: The actual cost of a pound of orange juice in Week 4 will be de-termined by a number of factors, such as orange juice production, distribution,sales, etc. These factors are the natural law governing orange juice cost.

Therecent cost of orange juice can be model as:x= the number of weeks since Week 1P(x) = the cost of a pound of orange juice at time x, in pesosThe table above have shown us the details: P(0) = 200, P(1) = 215, and P(2) =230. Then summarizing this information with the function will show us: P(x)= 200 + (15)x.Using the model, we can deduce that P(3) = 200 +(15)(3) = 245 pesos. We cannow predict that the cost of a pound of orange juice in Week 4 will be 245 pesos.Note that this may or may not be accurate. The model between the relation-ship of orange juice and it’s cost is based entirely on an observation of previouspatterns.

Sometimes it is hard to do all the work on your own
Let us help you get a good grade on your paper. Get expert help in mere 10 minutes with:
  • Thesis Statement
  • Structure and Outline
  • Voice and Grammar
  • Conclusion
Get essay help
No paying upfront

Example 2.1Lesson 2: Evaluating FunctionsTo evaluate a function1.Substitute the given value in the function of x.

2.Replace all the variable xwith the value of the function.3.Then compute and simplify the given function.Example 1: Given the function: f(x ) = 2 x+ 1, nd f(6).Substitute 6 in place holder x,f(6) = 2 x+ 1Replace all the variable of xwith 6,f(6) = 2(6) + 1Then compute function. f(6) = 12 + 1f (6) = 13Therefore, f(6) = 13. It can also write in ordered pair (6,13).

Example 2: Given the function f(x ) = x2+ 2 x+ 4 when x= 4. Substitute-4 in the place holder x,f( 4) = x2+ 2 x+ 4Replace the all the variables with 6, f( 4) = ( 4) 2+ 2( 4) + 4f ( 4) = (16) + ( 8) + 4f ( 4) = 12Therefore, f( 4) = 12 or simply as ( 4;12) :Example 3: Given g(x ) = x2+ 2 x- 1. Find g(2y).Answer in terms of y.g(2 y) = x2+ 2 x 1g (2 y) = (2 y)2+ 2(2 y) 1g (2 y) = 4 y2+ 4 y 1Therefore, 4( y)2+ 4 y 1:2Example 4: Givenf(x ) = 2 x2+ 4 x- 12, nd f(2 x+ 4).Solution:f(2 x+ 4) = 2 x2+ 4 x 12= 2(2 x+ 4) 2+ 4(2 x+ 4) 12= 2(2 x+ 4)(2 x+ 4) + 4(2 x+ 4) 12= 2(4 x2+ 16 x+ 16) + 4(2 x+ 4) 12= (8 x2+ 32 x+ 32) + (8 x+ 16) 12Combine like terms f(2 x+ 4) = 8 x2+ (32 x+ 8 x) + (32 + 16 12)= 8 x2+ 40 x+ 36= 2(2 x2+ 10 x+ 9)Therefore, f(2 x+ 4) = 2(2 x2+ 10 x+ 9).

Example 5: Given f(x ) = x2-x – 4. If f(m ) = 8, compute the value of mSolution: Make the function f(x ) equivalent to f(m )x 2 x 4 = 8x 2 x 12 = 0( x 4)( x+ 3) = 0x 4 + 0; x+ 3 = 0x = 4; x= 3Therefore, the value of a can be either 4 or -3.3Exercises:Evaluate the functionsgiven:1. p(x ) = 2x + 1, nd p(-2)2. p(x ) = 4 x, nd p(-4)3. g(n ) = 3 n2+ 6, nd g(8)4. g(x ) = x3+ 4 x, nd g(5)5. f(n ) = n3+ 3 n2, nd f(-5)6.

w(a ) = a2+ 5 a, nd w(7)7. p(a ) = a3- 4 a, nd p(-6)8. f(n ) = 4 3n+ 8 5, ndf(-1)9. f(x) = -1 + 1 4x;nd f(3 4)10. h(n) = n3+ 6 n, nd h(4)4Answers in Exercises:1.

52. -163. 1984. 1455. -506. 847.

-1928. 4 159. – 13 1610. 885Lesson 3: Operations on FunctionsLet h(x) and g(x) be functions, and the operations on these two functions isshown below: Adding two functions as:(h+g)(x) = h(x)+g(x) Subtracting two functions as:(h-g)(x) = h(x) – g(x) Multiplying two functions as:(h g)(x) = h(x) g(c) Dividing two functions as:( h g)(x) = h(x ) g(x ) ; whereg(x ) 6= 0Example 1:Let f(x) = 4x + 5 and g(x) = 3x. Find (f+g)(x), (f-g)(x), (f g)(x), and ( f g)(x).

(f+g)(x) = (4x+5) + (3x) = 7x+5 (f-g)(x) = (4x+5) – (3x) = x+5 (f g)(x) = (4x+5) (3x) = 12 x2+5x (f g)(x) = 4x +5 3xExample 2:Let f(x)= 3x+2 and g(x)= 5x-1. Find (f+g)(x), (f-g)(x), (f g)(x), and ( f g)(x). (f+g)(x) = (3x+2) + (5x-1) = 8x+1 (f-g)(x) = (3x+2) – (5x-1) = -2x+3 (f g) = (3x+2) (5x-1) = 15 x2+7x -2 (f g)(x) = 3x +2 5x 1Example 3:Let v(x) = x3and w(x) = 3 x2+5x.

Find (v+w)(x), (v-w)(x), (v w)(x), and( v w)(x). (v+w)(x) = ( x3) + (3 x2+5x) = x3+ 3 x2+5x (v-w)(x) = ( x3) (3×2+5x) = x3 3x 2-5x (v w) = ( x3) (3×2+5x) = 3 x5+ 5 x4 (v w)(x) = ( x3 3x 2+5 x) = xx 2 x(3 x+5) = x2 3x +5Example 4:Let f(x) = 4 x3+ 2 x2+4x + 1 and g(x) = 3 x5+ 4 x2+8x-12. Find (f+g)(x),(f-g)(x), (f g)(x), and ( f g)(x).6(f+g)(x) = (4 x3+ 2 x2+4x+1) + (3 x5+ 4 x2+8x-12) = 3 x5+ 4 x3+ 6 x2+12x-11 (f-g)(x) = (4 x3+ 2 x2+4x+1) – (3 x5+ 4 x2+8x-12) = 3x 5+ 4 x3 2x 2-4x+13 (f g)(x) = (4 x3+ 2 x2+4x+1) (3 x5+ 4 x2+8x-12)= 12 x8+ 6 x7+ 12 x6+ 19 x5+ 40 x4 16×3+ 12 x2 40x 12 (f g)(x) = (4×3+2 x2+4 x+1) (3×5+4 x2+8 x 12)Example 5:Let h(x) = 1 and g(x) = x4 x3+ x2-1.

Find (h+g)(x), (h-g)(x), (h g)(x),and ( h g)(x). (h+g)(x) = (1) + ( x4 x3+ x2-1) = x4 x3+ x2 (h-g)(x) = (1) – ( x4 x3+ x2-1) = x4 x3+ x2+2 (h g)(x) = (1) (x 4 x3+ x2-1) = x4 x3+ x2-1 (h g)(x) = 1 x4 x3+ x2 17Exercises:1. If h(x) = 7x+3 and g(x) = 2 x2+1. Find (f+g)(x)2. If f(x) = x5-18 and g(x) = x2- 6x + 9, what is the vaue of (g-h)(x)?3. If t(x) = 25 x5and s(x) = 55 x8, what is the value of ( t s)(x)?4.

If v(x) = x3and w(x) = x2+ 4, solve (v w)(x)?5. If f(x) = 4x + 11 and g(x) = 5x + 9, nd (f+g)(x).6. If f(z) = 7z – 4 and g(z) = z-2, nd (f-g)(x).7.

If f(x) =8 x2-20 and g(x) =-4, nd( f g)(x).8. If f(x) = 2x+2 and g(x) = 9 x2, what is the value of (f g)(x)?9. If f(x) = 7 x2+ 8x -3 and g(x) = 7x, solve for (f g)(x)?10. If f(x) = 35 x8- 45x and g(x) = 5x, what is the value of ( f g)(x).

8Answers to Operations on Functions Exercises:1. 2 x2+7x +42. x5 x2+ 6x – 273. 5x 11×34. x5+ 4 x35. 9x +206.

6z -27. 2x 2+ 58. 18 x3+ 18 x29. 49 x3+ 56 x2- 2110.7 x7- 99

x

Hi!
I'm Gerard!

Would you like to get a custom essay? How about receiving a customized one?

Check it out