3. Result and discussion3. 1. Characterization of olive bio-alkyd resin (OOBAR) FTIR spectroscopy was used for identification of specific functional groups of OB, COB, OOBAR, and Mo:OOBAR in range 4000–400 cm-1.
OB spectrum have broadband at 2996-3660 cm-1 (?OH), sharp peaks at 2933 cm-1 (?CH), 1612 cm-1 (?C?C) and 1084 cm-1 (?C-O-C). The bands of COB spectrum were shifted to 2343-3664, 1606 and 1097 cm-1. In addition, the new band has appeared at 37001 cm-1 while the band at 2933 was absent due to an oxidation process. Also, the bands of OOBAR spectrum were shifted to 3027-3741, 2925, 1631.5 and 1166 cm-1. The new bands have appeared at 2979, 2854 and 1739 and 1459 cm-1 due to C-H (aromatic), C-H (aliphatic), C=O and COOR.
- Thesis Statement
- Structure and Outline
- Voice and Grammar
- Conclusion
There are many sharp peaks for Mo:OOBAR was appeared at 780, 693, 519 and 507 cm-1 due to Mo(V) complexion and other bands for O-H, C-H (aromatic), C-H (aliphatic), C=O and COOR was disappeared due to the cleating agent.Figure 1UV-VIS electronic spectra of OB, COB, OOBAR, and Mo:OOBAR were estimated in solid state using Nujol mulls procedure. The higher energy of UV spectra bands of OB was performed at 241-265 nm which were attributed to the ?-?* transitions, and 293-340 nm which was attributed to the n-?* transitions localized on the conjugated system. Higher energy adsorption band in COB was assigned to 241-265 nm which was attributed to the ?-?* transitions, the second band was shifted to 293-355 nm and after oxidation process, there was a new band at 368-370 nm which were assigned to the n-?* transitions localized on the conjugated system. UV spectrum of OOBAR was shown that many absorption bands between 200 and 250 nm at (201, 205, 216, 224, 227-229, 232, 237, 241 and 245) nm which were assigned to ?-?* transitions and due to the several functional groups of OOBAR. Also, many lower energy bands have appeared between 300 and 320 nm due to n-?* transitions that localized on the conjugated system. Mo:OOBAR has higher energy adsorption bands at 233-245, 250 and 261 nm which were attributed to the ?-?* transitions, and 264-296 nm which was attributed to the ?-?* and n-?* transitions, and also at 299 and 307 nm which were attributed to the n-?* transitions localized on the conjugated system.
There are many lower energy bands were appeared at 247, 255 and 259 nm which were assigned to ?-?* transitions, and also between 300 and 340 nm due to n-?* transitions that localized on the conjugated system.